XJ05 RADIAL PISTON MOTOR

CONTENTS

Aboutus	03
XJ range	04
Product features	05
Quick selection diagram	07
Motor order code	80
Torque unit single speed option	10
Torque unit two speed option	11
Shaft motor single speed with spline	12
Shaft motor two speed with spline	13
Shaft motor output options	14
Shaft motor permissible dynamic and static radial load	15
Wheel motor single speed option	16
Wheel motor two speed option	17
Wheel motor output options	19
Wheel motor permissible dynamic and static radial load	20
Parking brakes	21
Direction of shaft rotation	22
Hydraulic connections	23
Torque output standard & increased displacements	24
Static torque standard & increased displacements	25
No load pressure drop & volumetric efficiency	26
Overall efficiency	28
Power envelope single speed	29
Power envelope two speed	30
Calculations	32

ABOUT US

Rotary Power specialises in the design, development and manufacture of hydraulic motors and pumps.

With a history dating back over 50 years, we understand the exacting and demanding requirements of today's hydraulic applications.

Operating from 18,000 sq.m. of purpose built manufacturing facilities, based in the North East of England and Bangalore, India, we continue to invest in the latest CNC machinery, automation and testing facilities. We have a clear focus on continuous improvement in lean cellular manufacturing. These facilities, alongside our European and US operations, offer sales, service and production support for the entire Rotary Power product range. A worldwide network of distribution partnerships provide additional support all over the world.

OUR BUSINESS

We recognise the importance of developing partnerships with our customers. That's why we offer flexibility in design, delivery and service to meet our customer's requirements.

Partnerships with our supply chain are key to Rotary Power's success and allow us to deliver excellent service in order to exceed expectations.

OUR PEOPLE

People are at the centre of everything we do. As an innovative engineering and manufacturing business we take recruitment and career development very seriously.

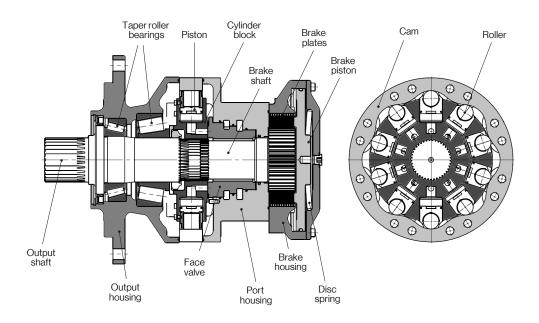
As part of the British Engines Group, we operate a training and development programme that maintains a strong focus on in-house manufacturing and a commitment to local employment. Our apprenticeship and graduate schemes provide the opportunity to develop and nurture engineering talent from an early stage.

OUR FUTURE

Whether in product design or internal processes and systems, our engineers are actively encouraged to develop new ideas within design and manufacturing. This ensures that we are at the forefront of customer and sector led innovation, whilst continuously improving our business.

Our team of in-house design engineers invest time into understanding our customer's application and work with them to deliver value added solutions, customised to their application.

XJ RANGE



The XJ range of hydraulic motors offer displacements from 260 to 5,010 cc/rev. The XJ05 is the smallest of the range with displacements from 260 to 750 cc/rev, complemented by the larger XJ20 and XJ40 motors extending the displacement range to 2,505 and 5,010 cc/rev.

The XJ motor has a range of features and options designed to suit your specific application:

- · Radial piston, multi-stroke operation
- Modular design
- Two speed options
- Parking brake options
- Freewheel capability
- Multiple mounting arrangements
- 350 bar continuous pressure
- Fast delivery options

The motor is designed with a rotating cylinder block connected to the drive shaft, which is mounted in taper roller bearings within the motor housing. This offers a high radial and axial load carrying capacity.

The pistons are located radially within the bores of the cylinder block. When oil is fed under pressure through the face valve and into the cylinder block, the pistons attempt to move outwards. The rollers react on the incline of the cam profile and this action produces rotation of the cylinder block.

The rate of flow to the motor will determine the speed at which the piston moves out against the cam ring and consequently the rotational speed of the motor. Once the power stroke is complete, the pistons return into the bore by the action of the reverse cam slope, ready for the next pressure cycle.

With units operating all over the world in a variety of applications including industrial, mobile and marine, the XJ range offers real application options for the future.

PRODUCT FEATURES STANDARD DISPLACEMENTS

Fluids	HL; HLP to DIN 51524 Other specified fluids are possible.
Normal operating viscosity range	20 to 200 cSt
Maximum intermittent viscosity range	10 to 2,000 cSt
Normal operating temperature range	+15°C to +70°C [+59°F to +158°F]
Maximum intermittent temperature range	-20° to +80° C [-4°F to +176°F]
Fluid cleanliness	ISO 4406 Code 18/16/13 (NAS 1638 Class 7)

FIRST DISPLACEMENT

Displacement option	Υ	Α	В	С	D	Е
Geometric displacement (cc/rev) [in³]	260	376	424	468	515	560
	[15.9]	[22.9]	[28.5]	[28.5]	[31.4]	[34.2]
Specific torque (Nm/bar) [lbf.ft/psi]	4.1	6.0	6.7	7.4	8.2	8.9
	[0.21]	[0.30]	[0.34]	[0.38]	[0.42]	[0.45]
Max. continuous speed (rpm)	300	250	230	210	200	180
Max. continuous power (kW) [hp]	29	29	29	29	29	29
	[38.9]	[38.9]	[38.9]	[38.9]	[38.9]	[38.9]
Max. continuous pressure (bar) [psi]	350	350	350	350	350	350
	[5,076]	[5,076]	[5,076]	[5,076]	[5,076]	[5,076]
Max. pressure (bar)* [psi]	450	450	450	450	450	450
	[6,527]	[6,527]	[6,527]	[6,527]	[6,527]	[6,527]

SECOND DISPLACEMENT

SECOND DIST EASEMENT						
Nominal displacement (cc/rev)	Υ	Α	В	С	D	Е
Geometric displacement (cc/rev) [in³]	130	188	212	234	258	280
	[7.9]	[11.5]	[12.9]	[14.3]	[15.7]	[17:1]
Specific torque (Nm/bar) [lbf.ft/psi]	2.1	3.0	3.4	3.8	4.1	4.5
	[0.11]	[0.15]	[0.17]	[0.19]	[0.21]	[0.23]
Max. continuous speed (rpm)	330	310	280	260	240	220
Max. continuous power (kW) preferred direction [hp]	19	19	19	19	19	19
	[25.5]	[25.5]	[25.5]	[25.5]	[25.5]	[25.5]
Max. continuous power (kW) non-preferred direction [hp]	15	15	15	15	15	15
	[20.1]	[20.1]	[20.1]	[20.1]	[20.1]	[20.1]
Max. continuous pressure (bar) [psi]	350	350	350	350	350	350
	[5,076]	[5,076]	[5,076]	[5,076]	[5,076]	[5,076]
Max. pressure (bar)* [psi]	450	450	450	450	450	450
	[6,527]	[6,527]	[6,527]	[6,527]	[6,527]	[6,527]

 $^{{}^{\}star}\text{Maximum values should only be applied for a small portion of the duty cycle.}$

Weight of motor without oil

Sizes are listed in mm, inches shown in brackets

Fluids	HL; HLP to DIN 51524 Other specified fluids are possible
Normal operating viscosity range	20 to 200 cSt
Maximum intermittent viscosity range	10 to 2,000 cSt
Normal operating temperature range	+15°C to +70°C [+59°F to +158°F]
Maximum intermittent temperature range	-20° to +80° C [-4°F to +176°F]
Fluid cleanliness	ISO 4406 Code 18/16/13 (NAS 1638 Class 7)

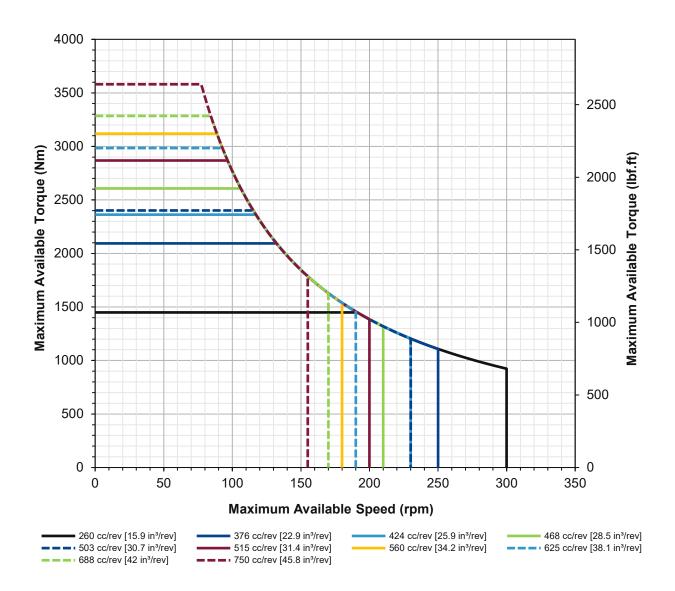
FIRST DISPLACEMENT

Displacement option	1	2	3	4
Geometric displacement (cc/rev) [in ³]	503	625	688	750
	[30.7]	[38.1]	[42.]	[45.8]
Specific torque (Nm/bar) [lbf.ft/psi]	8.0	9.9	10.9	11.9
	[0.41]	[0.51]	[0.56]	[0.61]
Max. continuous speed (rpm)	230	190	170	155
Max. continuous power (kW) [hp]	29	29	29	29
	[38.9]	[38.9]	[38.9]	[38.9]
Max. continuous pressure (bar) [psi]	300	300	300	300
	[4,351]	[4,351]	[4,351]	[4,351]
Max. pressure (bar)* [psi]	400	400	400	400
	[5,802]	[5,802]	[5,802]	[5,802]

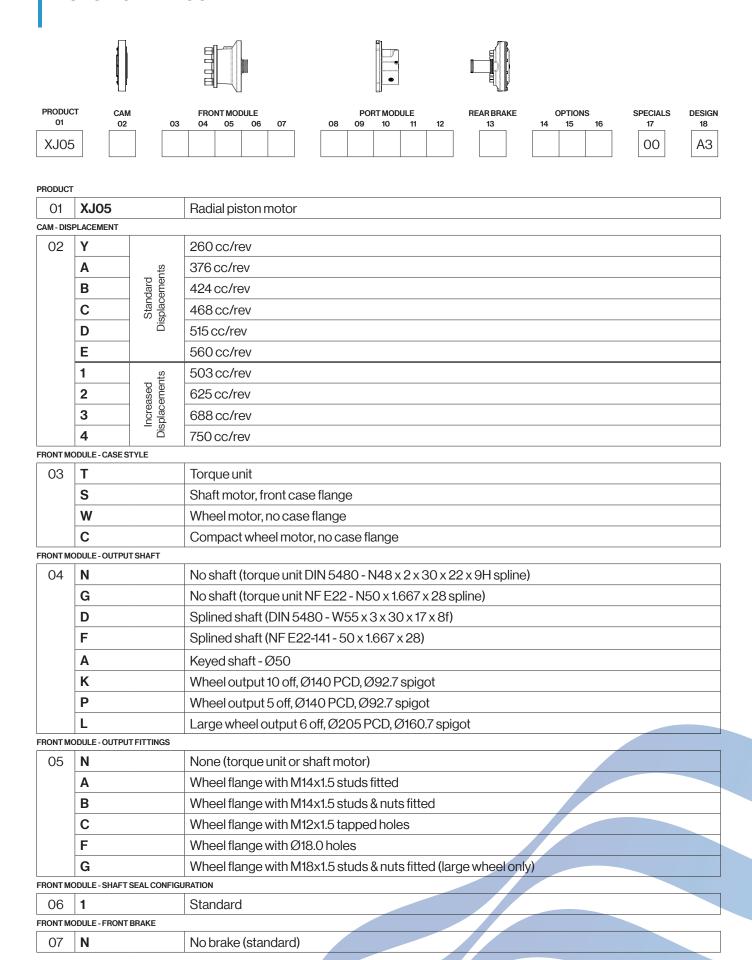
SECOND DISPLACEMENT

Nominal displacement (cc/rev)	1	2	3	4
Geometric displacement (cc/rev) [in ³]	252	313	344	375
	[15.4]	[19.1]	[21.]	[22.9]
Specific torque (Nm/bar) [lbf.ft/psi]	4.0	5.0	5.5	6.0
	[0.20]	[0.25]	[0.28]	[0.30]
Max. continuous speed (rpm)	300	250	210	190
Max. continuous power (kW) preferred direction [hp]	19	19	19	19
	[25.5]	[25.5]	[25.5]	[25.5]
Max. continuous power (kW) non-preferred direction [hp]	15	15	15	15
	[20.1]	[20.1]	[20:1]	[20.1]
Max. continuous pressure (bar) [psi]	300	300	300	300
	[4,351]	[4,351]	[4,351]	[4,351]
Max. pressure (bar)* [psi]	400	400	400	400
	[5,802]	[5,802]	[5,802]	[5,802]

^{*}Maximum values should only be applied for a small portion of the duty cycle.


Approx weight of motor without oil

←→

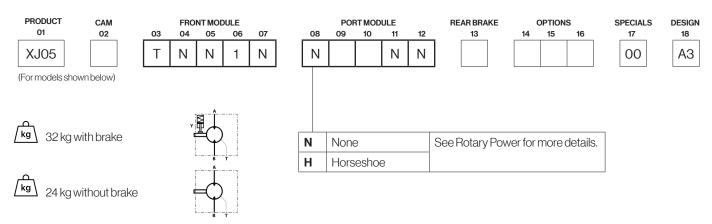

Sizes are listed in mm, inches shown in brackets

QUICK SELECTION DIAGRAM

Based on your torque and speed requirements, the diagram below can be used to help determine which displacement best suits your application. Shown for both standard (solid lines) and increased (dashed lines) displacements, the diagram outlines the limits of the motor based on its continuous power rating and maximum continuous pressure.

MOTOR ORDER CODE

PRODUCT	CAM 02 03	FRONT MODULE 04 05 06 07 08	PORT MODULE 09 10 11 12	REAR BRAKE 13	OPTIONS 14 15 16	SPECIALS 17	DESIGN 18						
XJ05						00	АЗ						
DODINO	WILE MOUNTING ELANGE												
08	N	No flange (torque units and sl	naft motors)										
00	Н	Horseshoe flange (wheel mo											
	L	Lug flange (two-speed whee	-										
PORT MOD	DULE - SPEED AND ROTATION	Lug hange (two-speed whee	THOLOIS OF IIY)										
09		Single speed - Pressure port	A = CW rotation										
	 1R Single speed - Pressure port A = CW rotation 1L Single speed - Pressure port A = ACW rotation 												
	RA	Two-Speed (Ratio 2:1) CW pr											
	LA	Two-Speed (Ratio 2:1) ACW p											
PORT MOD	ULE - HYDRAULIC CONNECTION												
10	0	No port block											
	1	All ports SAE J514 Oring bos											
	3	All ports BSP ('G' Ports)											
PORT MOD	ULE - ADDITIONAL CIRCUIT VA	ALVING											
11	N	None											
PORT MOD	ULE - SPEED SENSOR												
12	N	None											
	S	Speed sensor port in housing)										
	Т	Speed sensor included											
	U	Speed sensor and connector	rincluded										
REAR BRA	KE												
13	N	None											
	R	"R" parking brake (4,220 Nm)											
OPTIONS		T											
14	0	None											
15 16	G	Special paint (specify RAL No	o)										
.0	Р	Shaft-up vent port											
	V	Viton seal material											
SPECIALS													
17	00	Rotary Power specified											

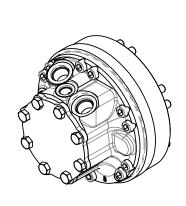

DESIGN SERIES

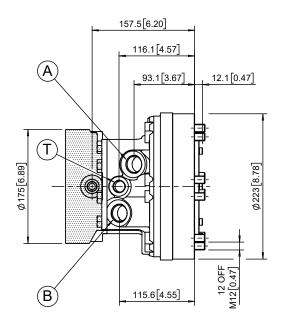
18

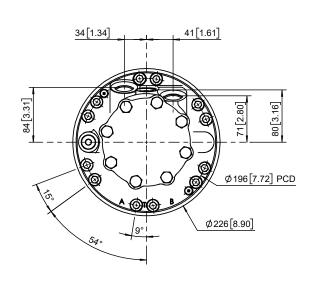
А3

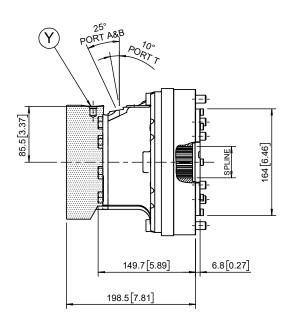
Design series

TORQUE UNIT SINGLE SPEED OPTION

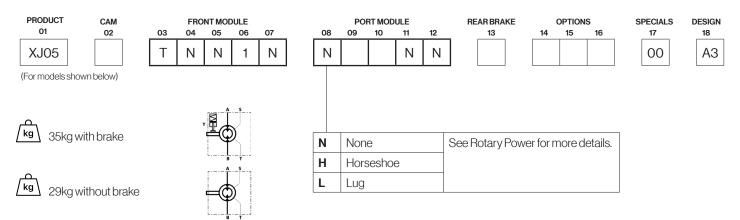



Rotor spline

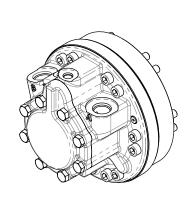

DIN 5480: N48 x 2 x 30 x 22 x 9H

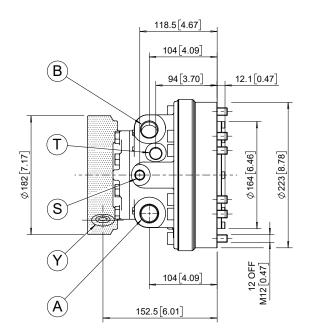

Other spline options available, contact us for more information.

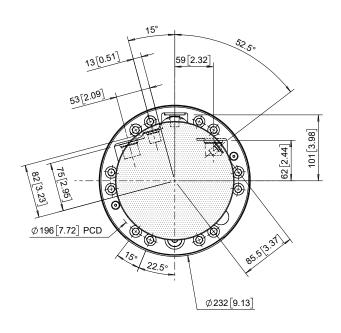
See page 23 for hydraulic connection options.

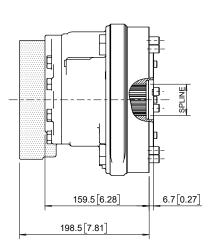


TORQUE UNIT TWO SPEED OPTION

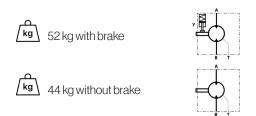


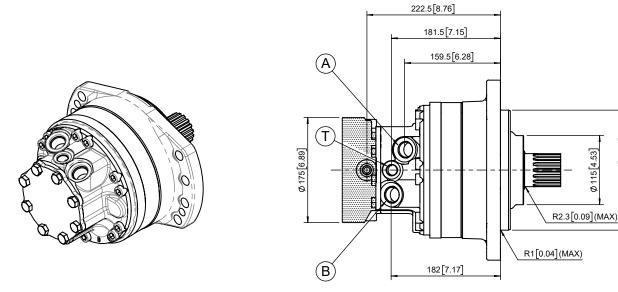

Rotor spline

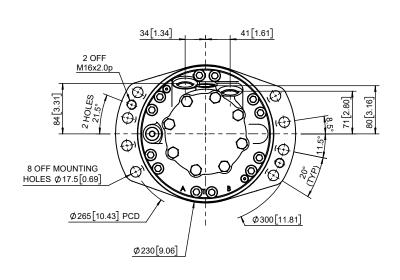

DIN 5480: N48 x 2 x 30 x 22 x 9H

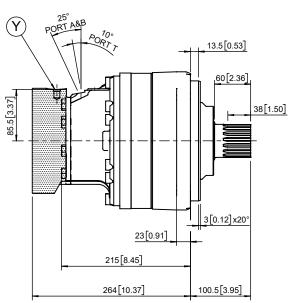

Other spline options available, contact us for more information.

See page 23 for hydraulic connection options.




SHAFT MOTOR SINGLE SPEED WITH SPLINE


PRODUCT	CAM	FRONT MODULE							PORT MODULE				REAR BRAKE OPTIONS				SPECIALS	DESIGN	
01	02		03	04	05	06	07	_	80	09	10	11	12	13	14	15	16	17	18
XJ05			S	D	N	1	N		Ν			Ν	Ν					00	АЗ


(For models shown below)

Shaft spline
DIN 5480: W55 x 3 x 30 x 17 x 8f
See page 14 for additional shaft options.
See page 23 for hydraulic connection options.

 $\phi_{199.928}^{200.000}$ [7.874]

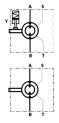
SHAFT MOTOR TWO SPEED WITH SPLINE

PRODUCT CAM 01 XJ05

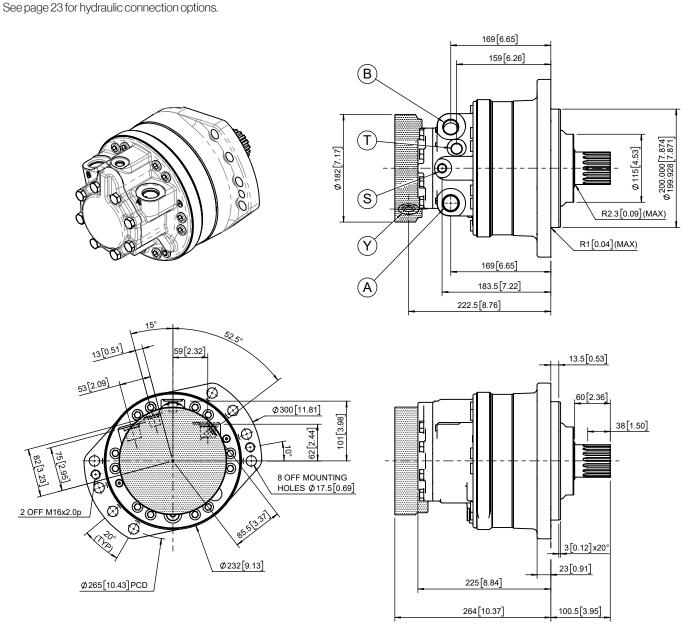
FRONT MODULE													
03	04	05	06	07									
S	D	Ν	1	N									

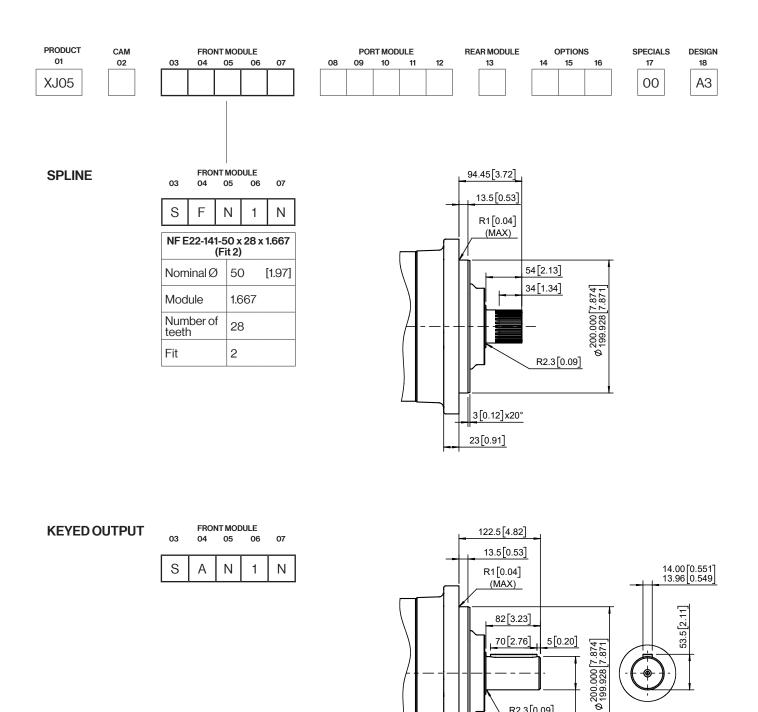
PORT MODULE												
80	09	10	11	12								
Ν			N	Ν								

REAR BRAKE OPTIONS SPECIALS DESIGN 00


АЗ

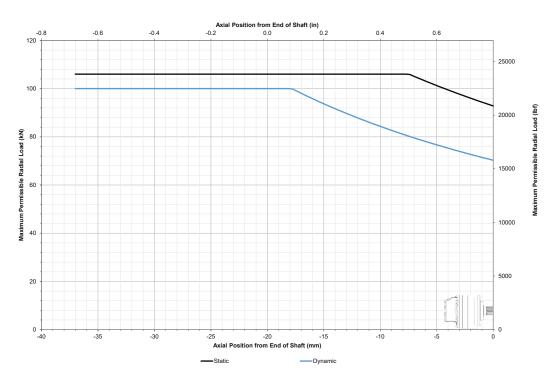
(For models shown below)


55kg with brake


52 kg without brake

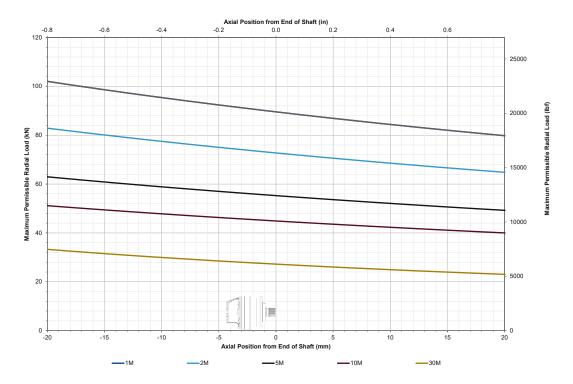
Shaft spline DIN 5480: W55 \times 3 \times 30 \times 17 \times 8f See page 14 for additional shaft options.

SHAFT MOTOR **OUTPUT OPTIONS**

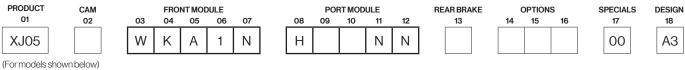

R2.3[0.09]

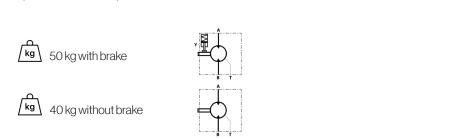
3[0.12]x20°

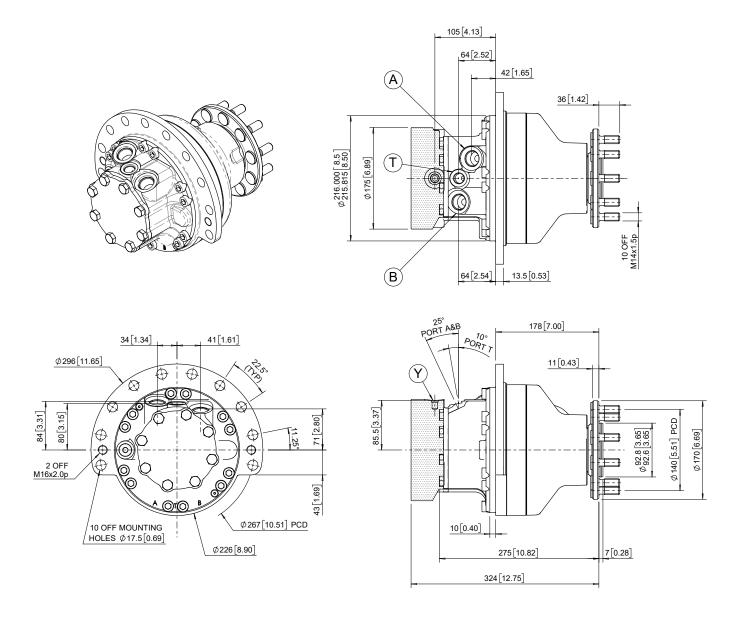
23[0.91]


 $\phi \begin{array}{c} 50.018 \\ 50.002 \\ 1.9686 \\ \end{array}$

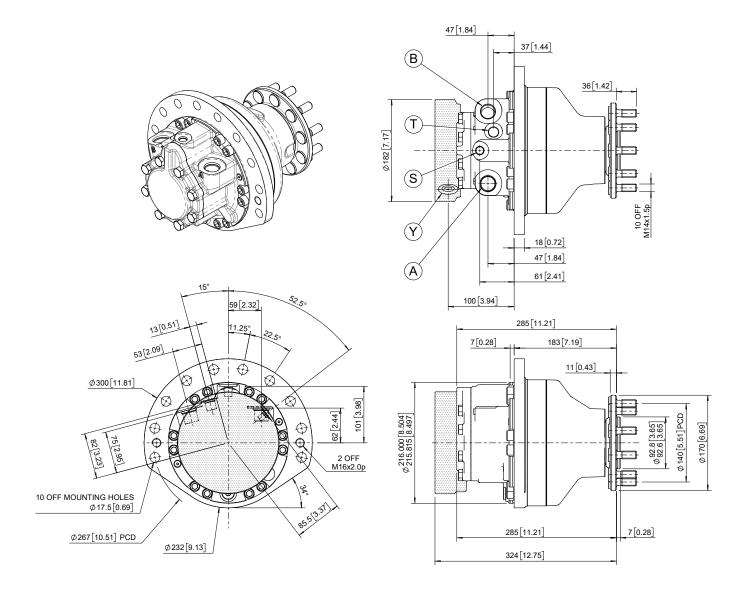
SHAFT MOTOR PERMISSIBLE DYNAMIC AND STATIC RADIAL LOAD

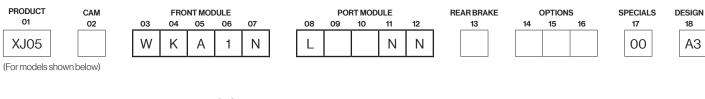

SHAFT MOTOR BEARING LIFE UNDER LOAD


The data illustrates the permissible radial load necessary to achieve a specified bearing life. Bearing life is shown in millions of revolutions. Data presented is at 150 bar average pressure, without external axial load.

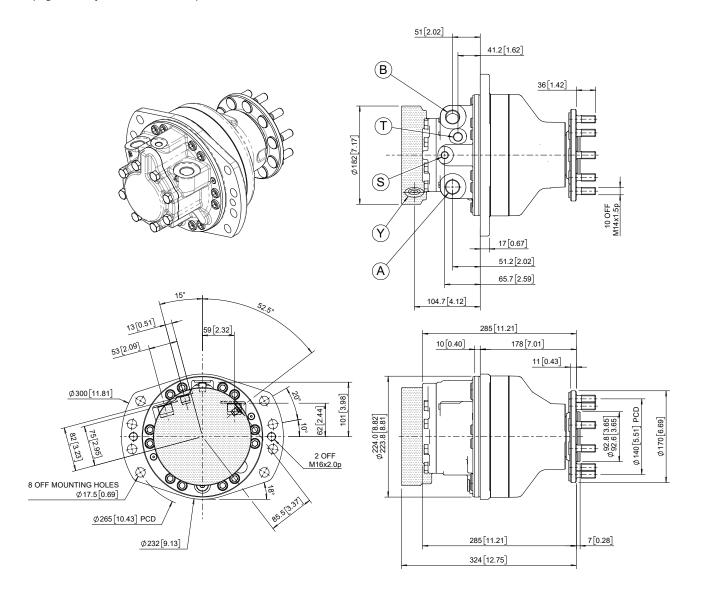

Contact us for alternative duty cycles. All data is based on the standard spline motor output shaft, option D. All data is based on theoretical calculations.

WHEEL MOTOR SINGLE SPEED OPTION

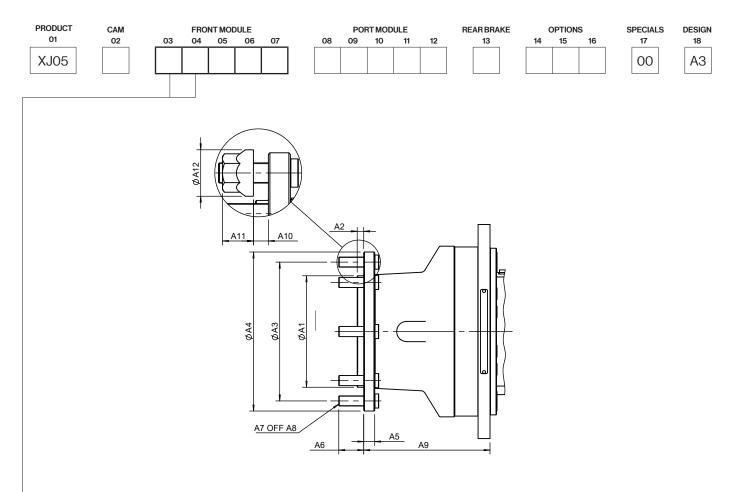

See page 19 for alternate wheel outputs. See page 23 for hydraulic connection options.


PRODUCT CAM FRONT MODULE									PO	RT MOD	ULE		REAR BRAKE		OPTION	SPECIALS	
01	02	03	04	05	06	07		- 08	09	10	11	12	13	14	15	16	
XJ05		W	K	Α	1	N		Н			N	N					00
(For models shown below)																	
kg 53 kg wit	h brake				Å S												
kg 45 kg wit	hout brake																

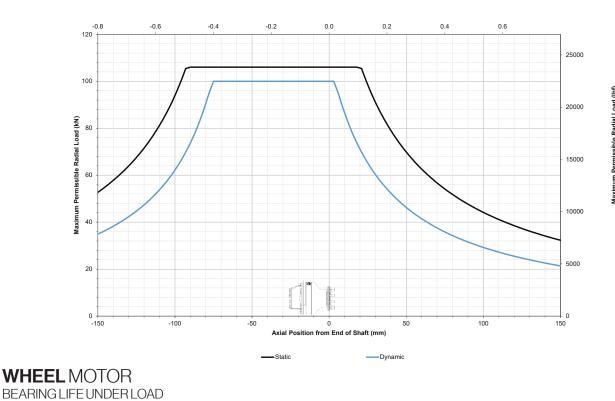
See page 19 for alternate wheel outputs. See page 23 for hydraulic connection options.


DESIGN 18

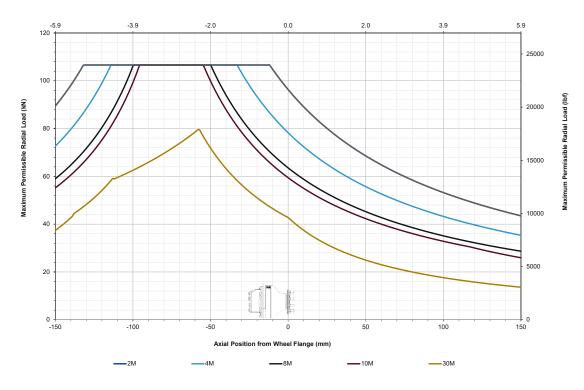
WHEEL MOTOR TWO SPEED OPTION



See page 19 for alternate wheel outputs. See page 23 for hydraulic connection options.



WHEEL MOTOR OUTPUT OPTIONS

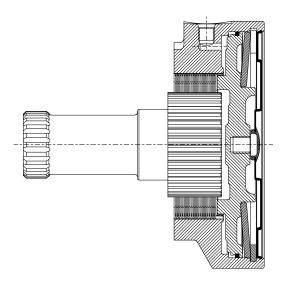


WHEEL MOTOR - OUTPUT SHAFT

Opti	ion	Туре	A1	A2	А3	A4	A5	A6	A7	A8	Tightening torque	A9 (Horseshoe)		A9 (Lug)	A10 (min)	A11 17 [0.67]	A12
03	04										(max)	1s 2s		2s only			
WK		Standard wheel	Ø92.7 [3.65]	7 [0.28]	140 [5.51]	170 [6.69]	13 [0.51]	36 [1.42]	10	M14x1.5p (studs) Ø18.0 (holes)	200 Nm [147.52] lbf.ft	178 [7.01]	183 [7.20]	178 [7.01]	5 [0.20]		32 [1.26]
										M12 x 1.5p (holes)							
W	P	Standard wheel	Ø92.7 [3.65]	7 [0.28]	140 [5.51]	170 [6.69]	13 [0.51]	36 [1.42]	5	M14x1.5p (studs) Ø18.0 (holes) M12 x 1.5p (holes)	[147.52] lbf.ft		183 [7.20]	178 [7.01]	5 [0.20]	17 [0.67]	32 [1.26]
W	L	Large wheel	Ø160.7 [6.33]	14 [0.55]	Ø205 [8.07]	Ø245 [9.65]	13 [0.51]	40 [1.57]	6	M18x1.5p (studs)	420 Nm [309.79] lbf.ft	178 [7.01]	183 [7.20]	178 [7.01]	5 [0.20]	24 [0.94]	40 [1.57]
С	К	Standard wheel	92.7 [3.65]	7 [0.28]	140 [5.51]	180 [7.09]	10.5 [0.41]	32.5 [1.28]	10	M14x1.5p (studs) Ø18.0 (holes) M12 x 1.5p (holes)	200 Nm [147.52] lbf.ft	145.4 [5.72]	150.4 [5.92]	145.4 [5.72]	5 [0.20]	17 [0.67]	32 [1.26]
С	P	Standard wheel	92.7 [3.65]	7 [0.28]	140 [5.51]	180 [7.09]	10.5 [0.41]	32.5 [1.28]	5	M14x1.5p (studs) Ø18.0 (holes) M12 x 1.5p (holes)	200 Nm [147.52] lbf.ft	145.4 [5.72]	150.4 [5.92]	145.4 [5.72]	5 [0.20]	17 [0.67]	32 [1.26]

The data illustrates the permissible radial load necessary to achieve a specified bearing life. Bearing life is shown in millions of revolutions. Data presented is at 150 bar average pressure, without external axial load.

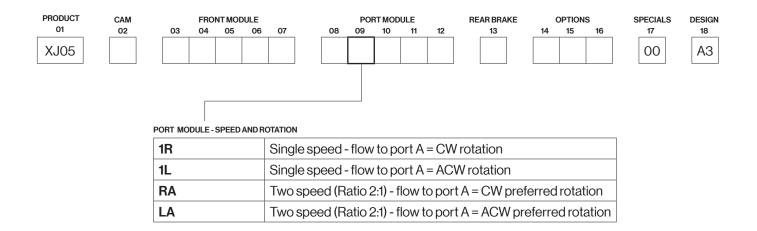
Contact us for alternative duty cycles. All data is based on the standard wheel motor output shaft, option K. All data is based on theoretical calculations


PARKING BRAKES

PRODUCT	CAM	FRONT MODULE					PORT MODULE					REAR BRAKE	OPTIONS			SPECIALS	DESIGN
01	02	03	04	05	06	07	80	09	10	11	12	13	14	15	16	17	18
XJ05												R					АЗ

The XJ05 multi-disc parking brake is a spring applied, hydraulic release, fail safe brake designed to be used with XJ05 motors in static situations.

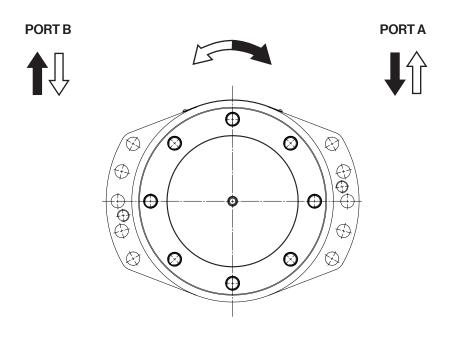
The multi-disc brake has a modular design which ensures it can be connected to any variant of the XJ05 motor.


The brake has two hydraulic release ports, one at the top of the housing and one at the bottom. The brake can be manually released by removing the plug in the cover and using an M12 screw to pull the piston back.

Brake static capacity when new	4,220 Nm [3,113 lbf.ft]
Static capacity after ten dynamic uses	3,207.2 - 3,671.4 Nm (1)(2)(3) [2,365.5 - 2,707.8 lbf.ft] (1)(2)(3)
Volume to fill	100 cc [6.1 in ³]
Volume to fully release brake	60 cc [3.6 in ³]
Min. pressure to fully release brake	12 bar [174 psi]
Max. acceptable pressure	30 bar [435 psi]
Time to release brake	< 0.5 seconds (4)(5)
Time to engage brake	<1 second (4)(5)
Emergency release fitting	M12 torqued to 60 Nm [45 lbf.ft]
Weight	10 kg [22 lbs]

- (1) Do not run in brake, wearing the plates will reduce the static capacity.
- (2) Dynamic use of the brake is not recommended and should only be used in emergency situations.
- (3) The disc pack should be replaced after ten dynamic uses.
- (4) Times may vary depending on fluid viscosity and valves used.
- (5) During low temperature applications, flushing the brake housing is recommended to maintain a constant oil viscosity. All data is based on ISO46 fluid at 40°C/[122°F]. If a different fluid will be used, please consult Rotary Power.

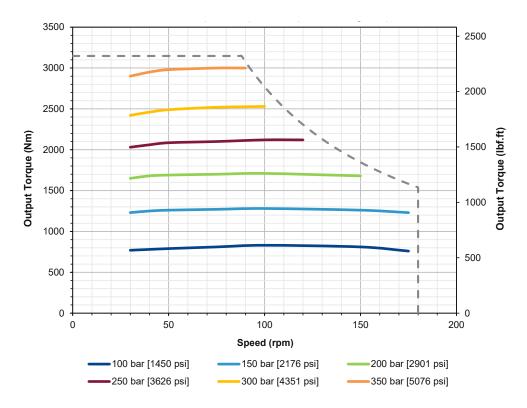
DIRECTION OF SHAFT ROTATION



The XJ motor code defines the starting direction of the motor. This is selected by the customer to best suit their application needs.

The starting direction is based on flow being supplied to port A. A single speed motor can have its starting direction reversed by supplying flow to port B.

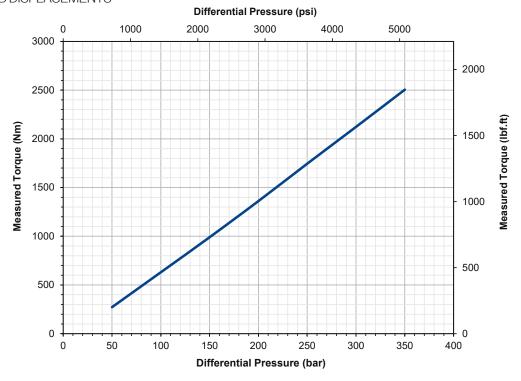
In two speed motors, pressurising port A is preferred as this prevents the motor from recirculating high pressure oil when shifted into second displacement. It is important to select the correct starting direction of a two speed motor to ensure optimum performance in the required direction.


DIRECTION OF SHAFT ROTATION VIEWED FROM THE SHAFT END

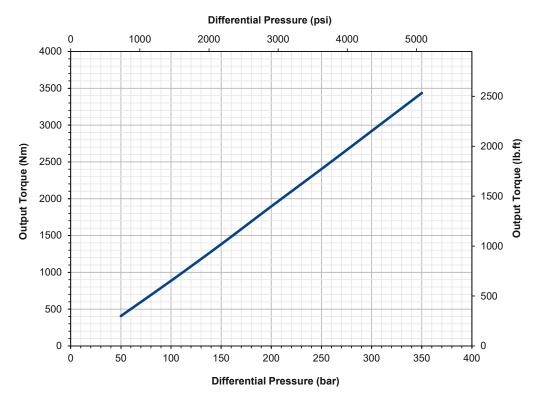
HYDRAULIC CONNECTIONS


PRODUCT CAM 01 02 XJ05		MODULE 05 06 07	PORT MODULE 08 09 10 11 12	REAR BRAKE 2 13	OPTIONS 14 15 16	SPECIALS DESIGN 17 18 OO A3	
	Port	Power supply	Drain	Speed change	Flushing	Parking brake	
		A B	Т	S	F	Υ	
XJ05 housing options	1	3/4" SAE J514 (1-1/16"-12 UNF)	1/2" SAE J514 (3/4"-16 UNF)	3/8" SAE J514 (9/16"-18 UNF)	1/4" SAE J514 (7/16"- 20 UNF)	1/4" SAE J514 (7/16"- 20 UNF)	
	3	G3/4"BSPP	G3/8"BSPP	G 3/8" BSPP	G 1/4" BSPP	G 1/4" BSPP	
May proceures	Standard	450	6	30	6	30	
Max. pressures bar [psi]	Displacements	[6,527]	[90]	[435]	[90]	[435]	
	Increased Displacements	400 [5,802]	6 [90]	40 [580]	6 [90]	30 [435]	

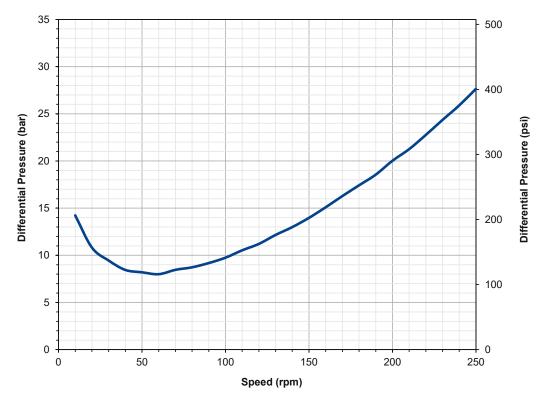
TORQUE OUTPUT STANDARD DISPLACEMENTS


The data presented above was collected using a 560 cc/rev motor with ISO46 fluid at 40°C . Pressure ranges shown are motor differential pressures (average 20 bar back pressure).

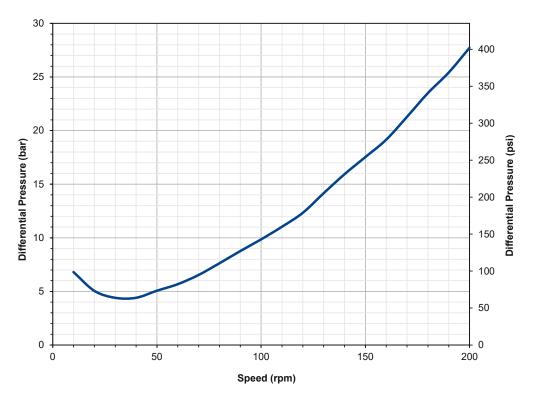
TORQUE OUTPUT INCREASED DISPLACEMENTS


The data presented above was collected using a 750 cc/rev motor with ISO46 fluid at 40°C. Pressure ranges shown are motor differential pressures (average 20 bar back pressure).

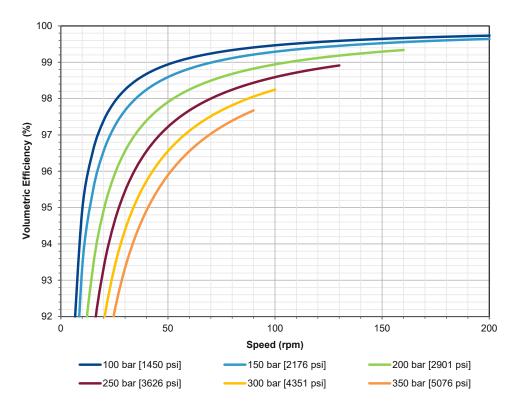
STATIC TORQUE AVERAGE TORQUE AT ZERO RPM STANDARD DISPLACEMENTS


The data presented above was collected using a 560 cc/rev motor with ISO46 fluid at 40°C. Static torque can vary depending on rotational position of the shaft.

STATIC TORQUE AVERAGE TORQUE AT ZERO RPM INCREASED DISPLACEMENTS

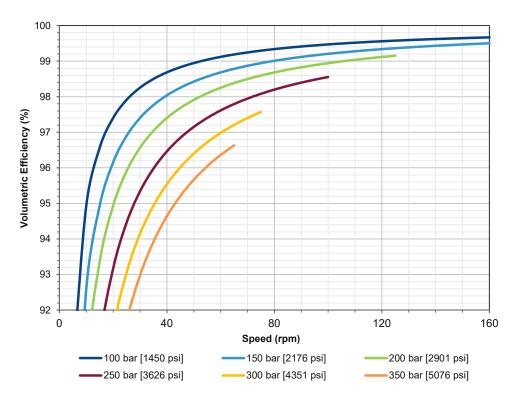

The data presented above was collected using a 750 cc/rev motor with ISO46 fluid at 40° C. Static torque can vary depending on rotational position of the shaft.

NO LOAD PRESSURE DROP STANDARD DISPLACEMENTS

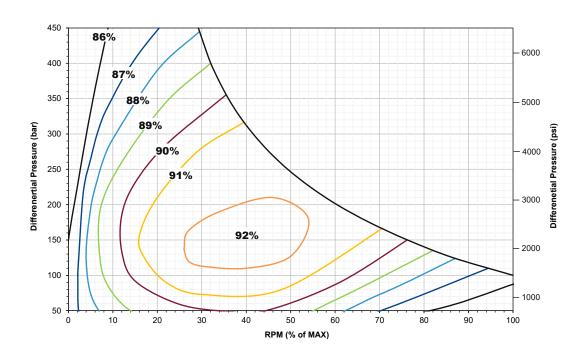

The data presented above was collected using a 560 cc/rev motor with ISO46 fluid at 40°C

NO LOAD PRESSURE DROP INCREASED DISPLACEMENTS

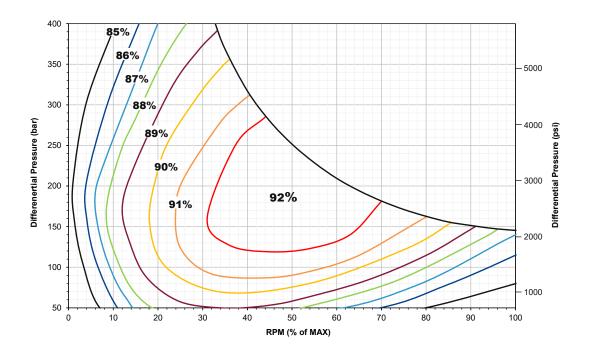
The data presented above was collected using a 750 cc/rev motor with ISO46 fluid at 40°C


VOLUMETRIC EFFICIENCY STANDARD DISPLACEMENTS

The data presented above was collected using a 560 cc/rev motor with ISO46 fluid at 40°C Pressure ranges shown are motor differential pressures (average 20 bar back pressure).

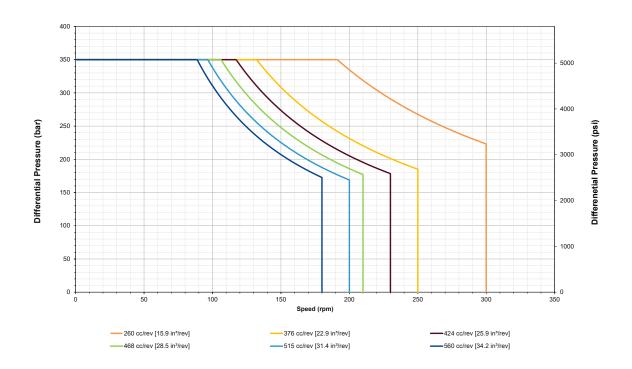

VOLUMETRIC EFFICIENCY

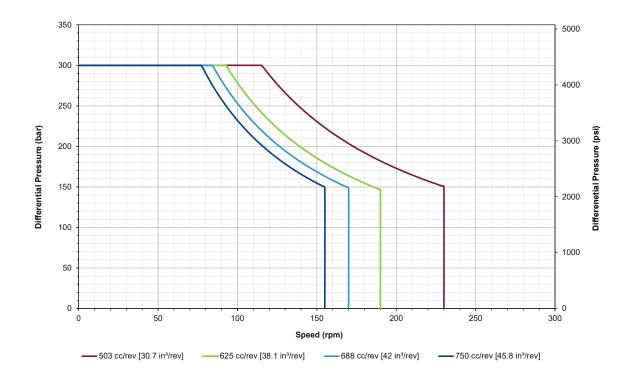
INCREASED DISPLACEMENTS


The data presented above was collected using a 750 cc/rev motor with ISO46 fluid at 40° C Pressure ranges shown are motor differential pressures (average 20 bar back pressure).

OVERALL EFFICIENCY STANDARD DISPLACEMENTS

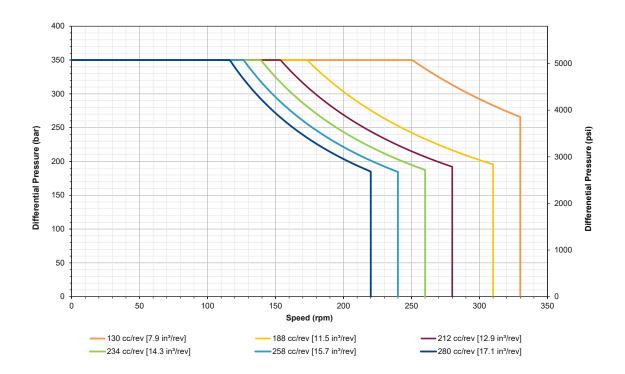
The data presented above was collected using a 468 cc/rev motor with ISO46 fluid at 40°C


OVERALL EFFICIENCY INCREASED DISPLACEMENTS

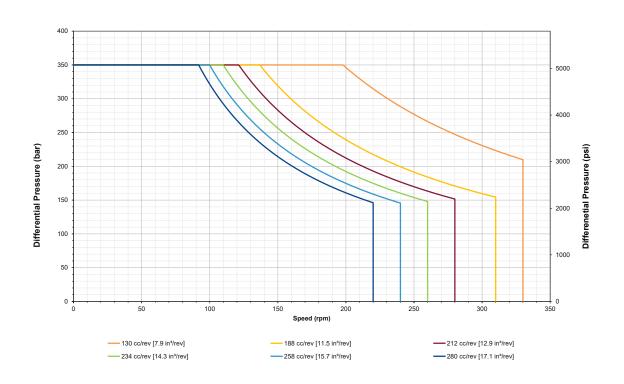

The data presented above was collected using a 625 cc/rev motor with ISO46 fluid at 40°C

POWER ENVELOPE: STANDARD DISPLACEMENTS

SINGLE SPEED 29KW MAX. CONTINUOUS POWER MAX DISPLACEMENT

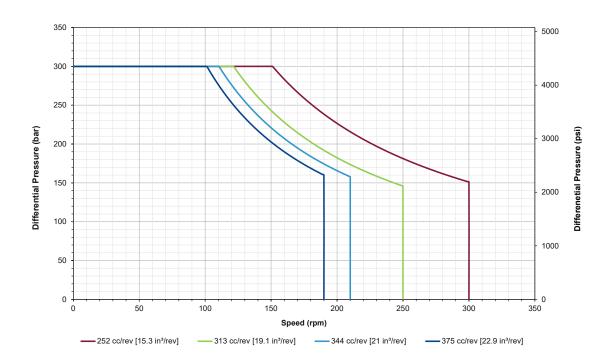


POWER ENVELOPE: INCREASED DISPLACEMENTS SINGLE SPEED 29KW MAX. CONTINUOUS POWER MAX DISPLACEMENT

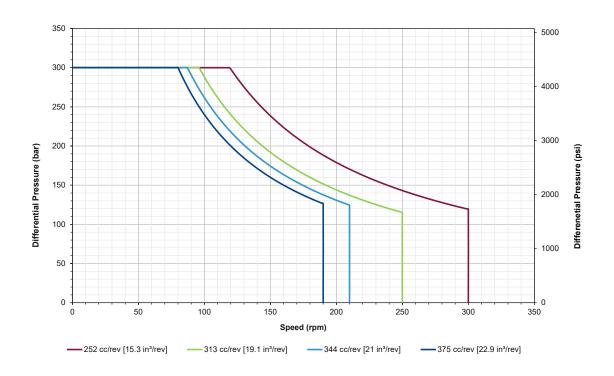


POWER ENVELOPE: STANDARD DISPLACEMENTS

TWO SPEED 19KW MAX. CONTINUOUS POWER MIN. DISPLACEMENT - PREFERRED DIRECTION



POWER ENVELOPE: STANDARD DISPLACEMENTS TWO SPEED 15KW MAX CONTINUOUS POWER MIN. DISPLACEMENT - NON PREFERRED DIRECTION


POWER ENVELOPE: INCREASED DISPLACEMENTS

TWO SPEED 19KW MAX. CONTINUOUS POWER MIN DISPLACEMENT - PREFERRED DIRECTION

POWER ENVELOPE: INCREASED DISPLACEMENTS TWO SPEED 15KW MAX CONTINUOUS POWER

MIN DISPLACEMENT - NON PREFERRED DIRECTION

CALCULATIONS

Output torque (Nm) =

Motor displacement (cc) x delta pressure (bar) x ηm

20π

Flow (lpm) =

Motor displacement (cc) x rotational speed (rpm)

1000 x ην

Output power (kW) =

Output torque (Nm) x rotational speed (rpm)

9,550

Where:

ηm = Mechanical efficiency ηv = Volumetric efficiency

For approximate estimates of performance use:

 $\eta m = 0.95$ $\eta v = 0.95$

CONVERSIONS

 $Nm \rightarrow lbf.ft = x 0.7376$

 $N \rightarrow lbf = x 0.2248$

 $bar \rightarrow psi = x 14.5038$

 $cc \rightarrow in^3 = x \ 0.061$

 $lpm \rightarrow U.S. gpm = x 0.2641$

 $kW \rightarrow hp = x 1.341$

 $kg \rightarrow lb = x 2.2046$

NOTES

NOTES

NOTES

UK

Rotary Power Waldridge Way Simonside East Industrial Park South Shields Tyne and Wear NE34 9PZ

T: +44 (0) 191 276 4444 E: enquiries@rotarypower.com W: www.rotarypower.com

USA

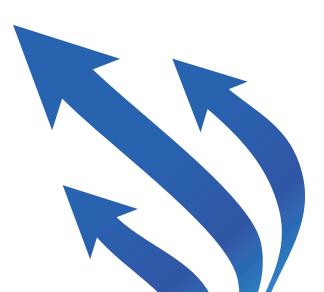
Rotary Power Inc. 3952 West Tickman Street Unit 4 Sioux Falls SD 57107

T: +1 (605) 361 5155 E: info@rotarypower.com

Germany

Rotary Power Vertriebsgesellschaft mbH Nordstrasse 78 52078 Aachen-Brand Germany

T: +49 (0) 241 955190 E: info.ac@rotarypower.com W: www.rotarypower.de


India

Rotary Power 6A, Attibele Industrial Area Anekal Taluk Bangalore 562 107

T: +91 (80) 782 0011

E: indiaenquiries@rotarypower.com

© Rotary Power Ltd 2024. All images and text, along with any intellectual property rights, contained in this catalogue are owned by Rotary Power Ltd and may not be used, reproduced or manipulated without the written permission of Rotary Power Ltd. The information contained in this catalogue is illustrative only. Rotary Power Ltd shall have no liability or responsibility in respect of reliance on the information contained in the catalogue. The information contained in the catalogue shall not form part of any contract subsequently put in place. We reserve the right to revise this document at any time, please check the Rotary Power Ltd website for the latest revision.

